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Abstract. We study the µ problem and radiative electroweak symmetry breaking in an extended gauge
mediation supersymmetry breaking model, in which the messenger fields are assumed to couple to the
different singlet fields due to the discrete symmetry. Since the spectrum of superpartners is modified,
the constraint from the µ problem can be relaxed in comparison with the ordinary GMSB at least from
the viewpoint of radiative symmetry breaking. We study the consistency of the values of µ and Bµ with
radiative electroweak symmetry breaking and also the mass spectrum of the superpartners.

1 Introduction

Supersymmetry is now considered to be the most promising
candidate for the solution of the gauge hierarchy problem.
Although we have no direct evidence of the supersymmetry
still now, the unification shown by the gauge couplings in
the minimal supersymmetric standard model (MSSM) may
indirectly reveal its signal. In the supersymmetric models
the most important subject is to clarify the supersym-
metry breaking mechanism in the observable world. Fla-
vor changing neutral current processes severely constrain
the scenario for the supersymmetry breaking. From this
point of view, gauge mediation supersymmetry breaking
(GMSB) [1–8] seems to be prominent, since the mediation
is performed in a flavor blind way by the standard model
gauge interactions.

In the ordinary minimal GMSB scenario [3–7], the mes-
senger fields (q, �) and (q̄, �̄) which come from the vector-
like chiral superfields 5+ 5̄ of SU(5) are considered to have
couplings in the superpotential such as

WGMSB = λqSqq̄ + λ�S��̄ , (1)

where S is a singlet chiral superfield.1 Both the scalar
component S and its F term FS are assumed to get vacuum
expectation values (VEVs) through the couplings to the
fields in the hidden sector where supersymmetry is assumed
to be broken. The masses of the gauginos and the scalar
superpartners are respectively produced by the one-loop
and two-loop effects through the couplings in (1). These
masses are characterized by Λ ≡ 〈FS〉/〈S〉 and then Λ is
considered to be in the range 20–100 TeV.

a e-mail: suematsu@hep.s.kanazawa-u.ac.jp
1 We will use the same notation for the scalar component as

its chiral superfield.

The chiral superfield S is usually considered not to have
a direct coupling to the doublet Higgs chiral superfields H1
and H2 in the superpotential, although it can be the origin
for both the µ term and the bilinear soft supersymmetry
breaking parameter Bµ. The reason is that the relation
Bµ = Λµ induced from such a coupling makes |Bµ| too
large for the electroweak symmetry breaking under the
assumption µ = O(100) GeV. On the other hand, if we
assume that |Bµ| has a suitable value for the electroweak
symmetry breaking, the resulting small µ cannot satisfy
the potential minimum condition.2 Since Λ takes a large
value as mentioned above, it makes both µ and Bµ dif-
ficult to take suitable values for the radiative symmetry
breaking [3–5, 8]. Even if there is no such coupling in the
superpotential, µ and Bµ can be produced radiatively pick-
ing up the supersymmetry breaking effect, and Bµ = Λµ is
generally satisfied [9]. This suggests that the electroweak
symmetry breaking cannot be induced radiatively also in
this case. Thus, it is usually considered that the µ term
should have another independent origin. This requires us
to introduce new additional fields for this purpose. A lot of
models of this kind have been proposed by now [3–5,8,9].

In this paper we show that the extended GMSB model
proposed here may ease the difficulty of the µ problem in
comparisonwith the ordinaryGMSBat least from the view-
point of radiative symmetry breaking. In this model we can
relax the constraint on µ and Bµ. The consistency of such
a scenario with radiative electroweak symmetry breaking
is studied in some detail by solving numerically the renor-
malization group equations (RGEs). Its phenomenological
results are also discussed. We present a concrete example in
the appendix. In this model the superpotential is suitably
arranged by the discrete symmetry which is introduced to
resolve the doublet–triplet Higgs degeneracy [10] in the
basis of the direct product gauge structure.

2 In the ordinary GMSB scenario the potential minimum
condition requires |Bµ| < µ2 as seen later.



360 D. Suematsu: µ problem in an extended gauge mediation supersymmetry breaking

2 Soft SUSY breaking and the µ problem

We extend the superpotential (1) for the messenger fields in
such a way that the messenger fields q, q̄ and �, �̄ couple to
the different singlet chiral superfields S1 and S2 which are
assumed to have couplings to the hidden sector where the
supersymmetry is supposed to be broken. This can happen
incidentally as a result of a suitable discrete symmetry as
we will see for an explicit example in the appendix. Thus
the couplings of messenger fields are expressed by

W ′
GMSB = λqS1qq̄ + λ�S2��̄ . (2)

If we assume that both Sα and FSα get the VEVs, the
gaugino masses and the soft scalar masses are generated
through one-loop and two-loop diagrams, respectively, as in
the ordinary case. However, the mass formulas are modified
from the ordinary ones since the messenger fields q, q̄ and
�, �̄ couple to the different singlet fields Sα.

The mass formulas of the superpartners in this type
of model have been discussed in [11]. Under the ordinary
assumptions, such as 〈FSα

〉 � λq,�〈Sα〉2 [3], the mass for-
mulas take a very simple form. The masses Mr of the
gauginos λr of the MSSM gauge group can be written in
the form of3
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where C3 = 4/3 and 0 for the SU(3) triplet and singlet
fields, and C2 = 3/4 and 0 for the SU(2) doublet and
singlet fields, respectively. The hypercharge Y is expressed
as Y = 2(Q − T3).

These formulas can give a rather different mass spec-
trum for the gauginos and the scalar superpartners in
comparison with the ordinary GMSB scenario. The spec-
trum depends on the value of Λ2/Λ1. In fact, if we assume
Λ1 < Λ2, the mass difference between the color singlet
fields and the colored fields tends to be smaller than the
one in the ordinary scenario at least at the supersymmetry
breaking scale. As an example, we take Λ1 = 60 TeV and
Λ2 = 150 TeV to show a typical spectrum of the superpart-
ners at the supersymmetry breaking scale. The resulting
spectrum is

M3 � 415 GeV , M2 � 418 GeV , M1 � 166 GeV ,

m̃Q � 851 GeV , m̃U � 690 GeV , m̃D � 682 GeV ,

3 If Λ1,2 are complex, gaugino masses can have physical phases
and they can affect various phenomena [12].

m̃L � 520 GeV , m̃E � 195 GeV ,

m1 = m2 � 520 GeV , (5)

where m1 and m2 are the masses of the Higgs scalars that
couple with the fields in the down and up sectors of quarks
and leptons, respectively. These masses are somewhat af-
fected by the running effect based on the renormalization
group equations (RGEs). As discussed in [7], in the min-
imal GMSB model the soft supersymmetry breaking Af

parameters can also be expected to be induced through
the radiative correction in such a way that

Af � Af (Λ) + M2(Λ)
(−1.85 + 0.34|ht|2

)
+ . . . , (6)

where we should omit a term with ht except for the top
sector (f = t). Thus, even if Af (Λ) = 0 is assumed, we can
expect Af to be generated through this effect.4

Asmentioned in the introduction, the values ofµ andBµ

are crucial for the electroweak symmetry breaking. Here
we examine the effect of the introduction of a coupling
λµS1H1H2 in the superpotential. It can give a contribution
to both µ and Bµ terms in the form as follows:

µ = λµ〈S1〉 , Bµ = λµ〈FS1〉 . (7)

Unfortunately, as in the ordinary case the problematic re-
lation Bµ = µΛ1 is satisfied also in this case. However,
this relation does not eventually rule out the possibility
for radiative symmetry breaking in the present case. This
is very different from the ordinary GMSB.

An important aspect of the µ problem in the GMSB is
crucially related to radiative electroweak symmetry break-
ing. In order to see this, we study the well-known conditions
for the radiative electroweak symmetry breaking. In the
MSSM the minimization conditions of the tree-level scalar
potential are written as

sin 2β =
2Bµ

m2
1 + m2

2 + 2µ2 , (8)

m2
Z =

2m2
1 − 2m2

2 tan2 β

tan2 β − 1
− 2µ2 , (9)

where we assume that µ and Bµ are real, for simplicity. In
these equations the Higgs scalar masses m2

1 and m2
2 should

be improved into the values at the weak scale by using
the RGEs. If we take account of the dominant one-loop
contributions, they can be written as [7]

m2
1(MW ) � m2

1(Λ)

− 3
2

M2
2 (Λ)

(
α2(MW )2

α2(Λ)2
− 1
)

− 1
22

M2
1 (Λ)

(
α1(MW )2

α1(Λ)2
− 1
)

,

4 In the present study we assume Af (Λ) = 0. The soft super-
symmetry breaking parameter Bµ/µ is also known to follow a
radiative correction similar to (6) and phenomenological stud-
ies have been done [7,13,14]. However, we will discuss the other
origin of Bµ(Λ) in the following.
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m2
1(MW ) − m2

2(MW ) � 6h2
t

8π2 m2
t̃ ln

(
Λ

mt̃

)
, (10)

where ht and mt̃ represent the top Yukawa coupling con-
stant and the stop mass, respectively. They are approxi-
mated by the values at Λ. The masses of the gauginos and
scalar superpartners at the supersymmetry breaking scale
Λ are determined by (3) and (4).

We first recall the situation for radiative symmetry
breaking in the ordinary GMSB case (Λ1 = Λ2) by check-
ing the condition m2

1 + m2
2 + 2µ2 > 2|Bµ|. It is obtained

from the condition (8) and is also required by the vacuum
stability. Inserting (10) into this inequality, we find that
this necessary condition can be approximately written as
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2
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It is easy to find that the condition (11) is never satisfied
unless ht takes an unacceptably small value in the case of
|Bµ| > µ2, which is caused by the relation Bµ = µΛ because
ofΛ � µ. Thus,weneed to consider an additional origin ofµ
to make the condition Bµ < µ2 be satisfied. This is the well-
known result in the ordinary GMSB scenario [5,8]. This fact
might make us consider that the condition m2

1+m2
2+2µ2 >

2|Bµ| cannot be satisfied in the GMSB model without the
new origin for µ as far as the undesirable relation Bµ = µΛ
exists. In the present model, however, Λ1 is not generally
supposed to be equal to Λ2. This feature can give us a new
possibility with regard to electroweak symmetry breaking
even if the relation Bµ = µΛ1, if Λ1 < Λ2 is satisfied, and
then the spectrum of the superpartners is modified.

In order to see this, it is useful to note that the factor
(α3/α2)2 ln(

√
6π/α3) in (11) should be modified into an

approximated factor[
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16
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3(Λ1/Λ2)2 + 9α2
2/16)1/2

(12)
in the present extendedGMSB.This is causedby the change
in the formulas of the soft scalar masses. We find that
m2

1 + m2
2 + 2µ2 > 2|Bµ| is satisfied, as far as the condition

Λ1 < Λ2 is fulfilled even in the case of ht � 1 and |Bµ| >
µ2.5 The same change related to the radiative correctiondue
to the top Yukawa coupling tends to make the allowed value
of tanβ smaller than the one in the ordinaryGMSBscenario
with the additional contribution to the µ term [5, 7, 14].
This can be found from (9). Moreover, the same equation
suggests that there appears an upper bound of Λ2/Λ1 if we
impose the lower bound for tanβ. For example, if we require
tanβ > 2, we find that Λ2/Λ1 � 3.5 should be satisfied.

A more accurate analysis of this aspect can be done
numerically by using the one-loop RGEs in the MSSM. For
this purpose we can transform the conditions (8) and (9)

5 In this paper we assume that Λ1,2 and µ are positive.
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Fig. 1. The values of µ2
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B predicted by the conditions
for radiative symmetry breaking in the case of Bµ = µΛ1. We
can find the solutions as the crossing points of µ2
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into the formulas for µ2 such as
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tan 2β + m2

Z sin 2β
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,

µ2
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2

m2
Z , (13)

where we use Bµ = µΛ1. To estimate these formulas we take
the following procedure. The gauge and Yukawa coupling
constants are evolved from the gauge coupling unification
scale to the weak scale. The soft supersymmetry breaking
parameters are introduced at Λ2 and evolved to the weak
scale. We use the weak scale values of m2

1 and m2
2 obtained

in this way and also the value of tanβ which is determined
by the top quark mass and the value of top Yukawa coupling
obtained from the RGEs.

In Fig. 1 we plot each value of µ2
A and µ2

B in the (Λ2/Λ1,
µ2) plane for several values of tanβ at Λ1 = 60 TeV. µ2

A
takes very small values of O(1) GeV and the smaller tanβ
realizes the larger value of µ2

A. µ2
B is very sensitive to the

value of Λ2/Λ1 in comparison with µ2
A. We can find that

there are solutions in the region such as Λ2/Λ1 � 3 if
we impose tan β � 2.4 which corresponds to the constraint
from the neutral Higgs boson search. However, if we assume
the larger value for Λ1, we can obtain the solutions for the
larger values of Λ2/Λ1.

Although radiative symmetry breaking can be found to
occur just within the framework without adding any fields,
we need to impose other phenomenological constraints for
the scenario to be realistic. Since the absolute values of Λ1
and µ are directly constrained by the experimental bounds
for the masses of the gluino and the neutralino, we find
that these values should be in the range

Λ1 � 20 TeV , µ � 102 GeV . (14)

This means that the present solution to the µ problem
requires another contribution to the µ term to overcome
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Fig. 2. The relation between µ̃ and B ≡ Bµ/µ̃ in the solutions
for the radiative symmetry breaking conditions. The µ̃ and B
are represented in GeV units

the constraint from the neutralino mass bound. However,
it is useful to note that the situation on the origin of µ
term is not the same as the ordinary case. Since |Bµ| < µ2

is not required in this case unlike the ordinary GMSB,
the constraint imposed from radiative symmetry breaking
on the additional contribution µ′ to the µ term can be
expected to be sufficiently relaxed.

In order to study this aspect, we study radiative sym-
metry breaking and the spectrum of the superpartners by
using the one-loop RGEs. In this study we need only mod-
ify the µ parameter into µ̃ = µ + µ′, where µ and Bµ are
defined by (7). There are four free parameters and we take
them as µ and µ′ in addition to Λ1,2. We can predict the
spectrum of the superpartners in a rather restrictive way
through this study. As the phenomenological constraints,
we impose the experimental mass bounds for the superpart-
ners and also require both the color and electromagnetic
charge not to be broken. Under these conditions we search
the allowed parameter region in the case of Λ1 = 60 TeV.

In Fig. 2 we give scatter plots of the solutions for radia-
tive symmetry breaking. In this figure we can see that there
are the solutions with |Bµ| > µ̃2 for the Λ2/Λ1 � 2 region,
although the solutions are restricted into the ones with
|Bµ| < µ̃2 for the Λ2/Λ1 � 2 case. The ordinary GMSB
should be noted to correspond to Λ2/Λ1 = 1. It should be
also noted that the µ parameter can be smaller than the
one in the ordinary GMSB.

We give the spectrum of the superpartners obtained in
the same analysis for the case of Λ1 = 60 TeV in Fig. 3. On
the lightest chargino and neutralino by combining Figs. 2
and 3 we can find that they are dominated by the gaugino
in the region Λ2/Λ1 � 2 and they change into the Higgsino
dominated one in the region Λ2/Λ1 � 2. The next lightest
superpartner is always the neutralino as far as Λ2/Λ1 > 1 is
assumed. The CP -even neutral Higgs boson mass slightly
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Fig. 3. Mass spectrum of the superpartners for the parameter
sets which satisfy the radiative symmetry breaking conditions
and various phenomenological constraints. The lightest one for
each superpartner is shown except for the gauginos

decreases when Λ2/Λ1 increases. This is caused by the
behavior of the stop mass. Although the neutral Higgs
boson mass is almost equal to the experimental bound for
this Λ1 value, it can be larger by taking Λ1 larger. The
difference of the mass spectrum of superpartners from the
one in the ordinary GMSB becomes clear in the larger
Λ2/Λ1 region. In that region the mass difference between
the coloredfields and the color singlet fields becomes smaller
and by using this feature we might distinguish the present
model from the ordinary one.

Finally we briefly comment on other features. Since the
soft masses of two Higgs fields H1 and H2 are the same
at the supersymmetry breaking scale, radiative symmetry
breaking predicts a relatively small value of tanβ such
as 2.5–7.5. Although tanβ > 10 is possible, it needs the
fine tuning of parameters. There can appear an interesting
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feature for the coupling unification scale in the case of
Λ2/Λ1 > 1. The unification scale of the coupling constants
of SU(3) and SU(2) can be pushed up to the higher scale
depending on the values of Λ1,2.6 This aspect comes from
the fact that the SU(2) non-singlet superpartners decouple
earlier than the others. However, we need further study
whether the large shift of unification scale can be consistent
with radiative symmetry breaking.

3 An additional contribution to the µ term

In this section we consider the embedding of the scenario
studied above into the realistic model, which is defined by
the following effective superpotential which can be induced
from the construction given in the appendix:

W2 = h1Ψ10Ψ10H2 +
h2Φ1

M
Ψ10Ψ5̄H1 +

h3Φ1

Mpl
S1H1H2

+h4Ψ1Ψ5̄H2 +
h5Φ1Φ2

Mpl
Ψ1Ψ1

+
λ1Φ2

M
S1qq̄ +

λ2Φ2

M
S2��̄ , (15)

where we use the notation of the fields given in Table 1 of the
appendix. M and Mpl are the effective unification scale of
O(1016) GeV and the reduced Planck scale, respectively.7
We use the usual notation in the MSSM for the Higgs fields
such as H1 ≡ H̃2̄ and H2 ≡ H2. The several terms can
be suppressed by the additional factors ε1,2 ≡ 〈Φ1,2〉/M
coming from the VEVs 〈Φ1〉 and 〈Φ2〉 given in (32), since
each term is controlled by the discrete symmetry. This
feature makes several terms phenomenologically favorable.
For example, the second term in the first line which includes
the MSSM relevant terms seems to be favorable to explain
the hierarchy between the masses of top and bottom quarks
for the various values of tanβ. The mass hierarchy between
the top quark and the bottom quark requires that ε1 should
be O(10−2) or larger. This feature also causes the favorable
effects on the second line which is relevant to the neutrino
masses. If the VEVs 〈Φ1〉 and 〈Φ2〉 take the suitable values
so as to be ε1 = O(10−2) and ε2 = O(1), the right-handed
neutrinos Ψ1 can have the mass of O(1013) GeV which is
suitable to explain the experimental data for the solar and
atmospheric neutrinos.

In the last line of (15), as we expected, the messenger
fields q, q̄ and �, �̄ couple with the different singlet fields
S1,2. Thus the messenger sector assumed in the previous
discussion is realized. The last term in the first line can
be the origin of the µ and Bµ terms, since both the scalar
component and the F -component of S1 are assumed to get
the VEVs. Both µ and Bµ in (7) can be induced by taking
λµ � h3ε1M/Mpl. In fact, if we assume

ε1 = O
(
10−2) , ε2 = O (1) , 〈S1〉 = O

(
105) GeV ,

6 The similar possibility has been discussed in other context
in [15].

7 Although the effectively induced F ′ invariant non-renor-
malizable terms are expected to be suppressed by M , the F
invariant ones are suppressed by Mpl.

〈FS1〉 = O
(
109) GeV2 , (16)

we can consistently obtain a suitable value of µ such as
O(1) GeV for radiative electroweak symmetry breaking as
has been discussed in the previous section. To satisfy the
mass bounds for the chargino and the neutralino, however,
we need to introduce an additional origin for µ′. If we
can introduce such an origin as µ′ = O(100) GeV, the
radiative symmetry breaking condition is expected to be
easily satisfied based on the present analysis.

The new origin may be given by the non-renormalizable
couplings among the Higgs chiral superfields and the singlet
chiral superfield N whose scalar potential has a negative
curvature due to the Kähler potential interaction [4,8]. We
consider the following terms in the effective Lagrangian:∫

d4θS†
1S1N

†N (17)

+
{∫

d2θ

(
1

Mpl
N4 +

Φ1

Mpl
NH1H2

)
+ h.c.

}
,

where each term should be determined by the discrete
symmetry presented in Table 1. In fact, the last two terms
can exist as the G×F and F ′ invariant ones if the F charge
of N is assigned as ω = 5. From these terms the additional
contribution µ′ to the µ term is yielded at the tree-level as

µ′ � ε1
√

FS1 . (18)

If we use (16), we can obtain µ′ of O(100) GeV. Since Bµ is
not produced at the tree-level following this µ′ generation,
the dominant Bµ comes from Φ1S1H1H2 in (15), and then
our result for radiative symmetry breaking, obtained in the
previous section, can be directly applicable to this model.

Finally we should comment on the mass eigenvalues
and the mixings of quarks and leptons in this model. We
would like to stress that the existence of the suppression
factor ε1 is favorable for the explanation of the masses of
quarks and leptons as mentioned below (15). The value of
ε1 is constrained by the masses of the bottom quark and the
τ lepton. If we impose tanβ � 2, which is required by the
constraint from the neutral Higgs boson mass, ε1 � 10−2

should be satisfied. This is consistent with the condition
given in (16) and also with the neutrino oscillation data.
Moreover, if we introduce the flavor dependence of the F
charge and also the Frogatt–Nielsen flavor U(1) symmetry
into this model along the line of [18], the qualitatively
satisfactory mass eigenvalues and mixing angles for the
quarks and the leptons are expected to be derived. We will
discuss this subject in another place.

4 Summary

We have investigated the µ problem and radiative sym-
metry breaking in the extended GMSB scenario, in which
the SU(3) triplet messenger and the SU(2) doublet one
couple to the different singlet chiral superfields. Some kind
of discrete symmetry is assumed to force the SU(3) triplet
messenger and the SU(2) doublet messenger respectively
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to couple to the different singlet fields. The direct coupling
between the doublet Higgs fields and the one of these singlet
fields is assumed to be allowed but suppressed largely due
to this discrete symmetry. This coupling can give the origin
of both µ and Bµ terms. Since the model has two scales
which are relevant to the supersymmetry breaking and the
superpartner masses depend on both of them, the induced
µ and Bµ can be consistent with radiative electroweak sym-
metry breaking. This aspect is largely different from the
ordinary minimal GMSB and it may present a new solution
for the µ problem in the GMSB scenario at least from the
viewpoint of the radiative symmetry breaking. However, to
make the model consistent with the experimental bounds
for the masses of superpartners, it seems to be required to
introduce the additional contribution to the µ term. Some
interesting features different from the ordinary GMSB ap-
pear in the spectrum of the superpartners and induce new
phenomenological features. The mass difference between
the colored and color singlet superpartners tends to be
smaller in comparison with the ordinary GMSB scenario.
The gaugino masses become non-universal generally. The
next lightest superparticle can be always the neutralino.
As a result of these features, the gauge coupling unification
scale may be pushed upwards somewhat.

Further phenomenological study of this kind of model
seems to be worthwhile since it can be related to the rea-
sonable motivation such as the doublet–triplet splitting
problem in the grand unified model.
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Appendix

In this appendix we present the construction of the model
which can realize the extended GMSB discussed in the text.
As its starting point we consider a model with a direct
product gauge structure such as G = SU(5)′ ×SU(5)′′ and
a global discrete symmetry F which commutes with this
gauge symmetry [11]. The field content of the model is
listed in Table 1.

The model is constructed based on the following decon-
struction [11]. The theory space before the deconstruction
is represented by the moose diagram which is composed of
the n sites Qi placed on the vertices of an n-polygon and one
site on its center P of this polygon [16]. We assign SU(5)′
on the site P and SU(5)′′ on each site Qi and also put a
bifundamental chiral superfield Φi on each link from P to
Qi. On each link from Qi to Qi+1 we put the adjoint Higgs
chiral superfield Σ of SU(5)′′. We introduce an equivalence
relation only for the boundary points of the polygon by
a 2π/n rotation and we identify this Zn symmetry with
the above mentioned discrete symmetry F . This makes us
consider the reduced theory space composed of only three
sites P , Q1 and Q2, in which the field contents become
equivalent to the one given in Table 1. Under these set-
tings the remaining symmetries can be determined through
the following discussion [11,16].

We consider the unitary link variables Ui ≡ exp(iφi/M̃)
and W ≡ exp(−iσ/M̃) where φ1,2 and σ are the scalar
components of Φ1,2 and Σ. If we use W as introduced
above, this equivalence relation requires that Wn = 1 is
satisfied. Thus we can write W as follows:

W = diag
(
e2iρ, e2iρ, e2iρ, e−3iρ, e−3iρ) , (19)

where eiρ is the nth root of unity. If we assume that our
model is obtained as a result of this deconstruction, the con-
dition

UiWU−1
i+1 = 1 (20)

Table 1. Charge assignment of the discrete symmetry F ′ for the chiral
superfields. For the adjoint Higgs field Σ we show only the F ′ charge
of the diagonal elements

F(G rep.) F F ′

3 ∈ 5 or 3̄ ∈ 5̄ 2 ∈ 5 or 2̄ ∈ 5̄
Quarks/Leptons Ψ j

10(10,1) α α α

(j = 1 ∼ 3) Ψ j
5̄(5̄,1) β β β

Ψ j
1(1,1) γ γ γ

Higgs fields H(5,1) ρ ρ ρ

H̃(1, 5̄) ξ ξ + 2a ξ − 3a

Messenger fields χ̄(5̄,1) δ δ δ

χ(1,5) ε ε − 2a ε + 3a

Bifundamental field Φ1(5̄,5) η η + 2b η − 3b

Φ2(5, 5̄) ζ ζ − 2b ζ + 3b

Adjoint Higgs field Σ(1,24) 0 0 (for Σ ī
i)

Singlets S1(1,1) θ θ

S2(1,1) τ τ

N(1,1) ω ω
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should be satisfied for i = 1, which means that the holon-
omy around each two-dimensional plaquette is equal to 1.8

Now we consider the transformation property of this
vacuum under the gauge transformation such as

U ′
i = ω′ Ui (ω′′)−1 , W ′ = ω′′ W (ω′′)−1 , (21)

where ω′ and ω′′ are the group elements of SU(5)′ and
SU(5)′′, respectively. The invariance of Ui and W shows
that the group elements ω of the unbroken gauge group
satisfy the condition: ω = ω′ = ω′′ and [ω, W] = 0. Since
we take the VEVs of Higgs scalar fields as (19) and (20), the
unbroken gauge group is H = SU(3)×SU(2)×U(1) which
is a subgroup of the diagonal sum SU(5) of G. Next we
introduce a discrete symmetry F ′ as a diagonal subgroup
of F × GU(1)′′ where GU(1)′′ is a discrete subgroup of a
hypercharge in SU(5)′′. If we write the group elements of
F and GU(1)′′ as f and ωD, the transformation of Ui due
to F ′ can be written as

U ′
i = (fUi) ω−1

D = Ui+1ω
−1
D . (22)

If we take ωD as W, we find that Ui is invariant under
this transformation due to the relation UiWU−1

i+1 = 1 and
F ′ remains unbroken. The invariance of W is also clear.
Thus we can conclude that in this model the symmetry
G ×F breaks down into H×F ′ by considering the vacuum
defined by (19) and (20). In the following we suppose that
the model is defined by this H × F ′, that is, the model is
assumed not to be SU(5) symmetric. The situation is the
same as in the case of the heterotic string with the Wilson
line [17]. An important point is that every field which has a
non-trivial transformation property with respect to SU(5)′′
can have different charges for the doublet and the triplet,
since the definition of F ′ contains the discrete subgroup of
U(1)′′ in SU(5)′′ as its component.9 We give the charges
assignment for the fields with respect to F ′ in Table 1.

In order to fix the discrete charges for F ′ we impose the
following conditions on F ′ to satisfy various phenomeno-
logical constraints in a way similar to as we have followed
in [11] .
(i) To realize the doublet–triplet splitting, only the color
triplet Higgs chiral superfields H3 and H̃3 except for the
ordinary doublet Higgs chiral superfields H2 and H̃2 should
become massive after the symmetry breaking due to (32).
All of the effective Yukawa couplings Φ1,2H2H̃2 and
ΣH2H̃2 should be forbidden by F ′, although ΣH3H̃3 is

8 This corresponds to the energy minimum condition from
the viewpoint of the lattice gauge [16].

9 This is possible if we assume that SU(5)′′ is an induced
symmetry as the diagonal sum of two SU(5) groups and also H̃, χ
and Φ1, Φ2 are the fundamental representations of these different
SU(5)s, respectively. In that case the charge normalization of
the discrete group GU(1)′′ can be independent from each other
for H̃, χ and Φ1, Φ2. Thus the discrete parameters a and b in
Table 1 can be determined independently up to the modulus
n. Even if we do not refer to this kind of SU(5)′′, its discrete
charges for H̃, χ and Φ1,2 can be different from each other even
in the case of the same representation of SU(5)′′, since GU(1)′′

is not just the hypercharge U(1)′′ but its discrete subgroup.

allowed at least.10 In terms of the discrete symmetry F ′
this gives the conditions on the effective superpotential
such as

ρ + ξ + 2a = 0 , ρ + ξ − 3a �= 0 ,

ρ + ξ + η − 3(a + b) �= 0 ,

ρ + ξ + ζ − 3(a − b) �= 0 . (23)

(ii) Yukawa couplings of quarks and leptons, that is,
Ψ10Ψ10H2 and Ψ10Ψ5̄H̃2̄Φ1 should exist under F ′. This re-
quires

2α + ρ = 0 , α + β + ξ + η − 3(a + b) = 0 . (24)

(iii) The fields χ and χ̄ should be massless at the G break-
ing scale and play the role of the messenger fields of the
supersymmetry breaking which is assumed to occur in the
Sα sector. These require the absence of Φ1,2χχ̄ and Σχχ̄
under F ′. We also impose the existence of the coupling
Φ2Sαχχ̄ under F ′. These conditions can be written as

δ + ε + ζ + θ − 2(a + b) = 0 ,

δ + ε + ζ + τ + 3(a + b) = 0 ,

δ + ε + ζ − 2(a + b) �= 0 ,

δ + ε + η − 2(a − b) �= 0 ,

δ + ε − 2a �= 0 ,

δ + ε + ζ + 3(a + b) �= 0 ,

δ + ε + η + 3(a − b) �= 0 ,

δ + ε + 3a �= 0 . (25)

(iv) The neutrino should be massive and the proton should
be stable. This means that Ψ5̄Ψ1H2 and Φ1Φ2Ψ

2
1 should ex-

ist and Ψ10Ψ2
5̄ and Ψ3

10Ψ5̄ should be forbidden [16]. These re-
quire

β+γ+ρ = 0 , η+ζ+2γ = 0 , α+2β �= 0 , 3α+β �= 0 .
(26)

(v) The gauge invariant bare mass terms of the fields such
as Ψ5̄H, Hχ̄, H̃χ should be forbidden.11 These conditions
are summarized as

β + ρ �= 0 , ρ + δ �= 0 , ξ + ε �= 0 . (27)

Here we additionally assume that both the origin of
µ and Bµ is in the Higgs coupling with S1 in order to
embed our scenario discussed in the previous section into
10 This phenomenon suggesting the existence of F ′ may be
understood by considering a partial cancellation between the
direct coupling Φ1HH̃ and a mass term M exp i{(−φ1 + σ +
φ2)/M̃}HH̃ induced by a holonomy operator associated with
the symmetry breaking introduced to define the theory.
11 We cannot forbid the bare mass terms of the singlet chiral
superfields completely based on the discrete symmetry F ′ alone.
Although we might need additional symmetry to prohibit it,
we do not discuss this further here, and we only assume that
they have no bare masses.
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this unified model. For this realization we introduce an F
invariant term Φ1S1HH̃ in the superpotential before the G
breaking.12 The condition for the existence of such a term
can be written as

ρ + ξ + η + θ = 0 . (28)

Every condition above should be understood up to the
modulus n when we take F ′ = Zn.

We can easily find an example of the consistent solu-
tion for these constraints, (23)– (28). In order to show its
existence concretely, we give an example here. If we take
F ′ = Z20, these condition can be satisfied under the charge
assignment,13

α = ε = −1 , ρ = θ = 2 , τ = a = −3 , ξ = b = 4 ,

δ = −7 , β = ζ = −η = 8 , γ = 10 . (29)

After the symmetry breaking described by (32) the various
F ′ invariant terms effectively appear as we have required.
It should be noted that the different singlet fields S1,2
are generally required for the couplings to χ and χ̄, which
play the role of messengers of the supersymmetry breaking.
This feature incidentally comes from the introduction of
the direct product gauge structure motivated to realize the
doublet–triplet splitting, which requires the F ′ charges of
χ and χ̄ to satisfy

θ − τ = 5(a + b) �= 0 (mod n) . (30)

In order to describe the effective low energy theory
after the symmetry breaking due to the Wilson line, we
may consider anF ′ invariant renormalizable superpotential
such as

W1 = MφTr (Φ1Φ2) +
1
2

MσTr
(
Σ2)

+λ Tr
(

Φ1ΣΦ2 +
1
3

Σ3
)

. (31)

As it is shown in [11], the scalar potential derived from
this W1 has a non-trivial minimum which is realized at

12 If we make the Higgs doublets couple to S2 instead of S1, µ
seems not to be large enough to satisfy the radiative symmetry
breaking condition.
13 We have not taken account of the anomaly of F ′ here.
Although this anomaly cancellation might require the intro-
duction of new fields and impose the additional constraints on
the charges, it will not affect the result of the present study of
the model.

σ = M̃ diag (2, 2, 2, − 3, − 3) , φ1 = κσ ,

φ2 =
1
κ

(
Mσ

Mφ
− 1
)

σ , (32)

where M̃ is defined as M̃ = Mφ/λ. These VEVs satisfy (19)
and (20).14 The low energy theory should be considered
on the vacuum defined by (32).
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